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Overall Review

e Center for Advanced Infrastructure and Transportation
(CAIT) — annual funding over $12M

* Ourteam —
— 9 Ph.D. students
— 2.5 full time staff (programmers)
— Contractors
— Annual funding ~ S1M

— Areas of research:
* Energy systems, building, communities, industrial processes
* Transportation - safety, mobility and energy

— Funding sources: DOD, DOT, DOE, CEC, FHWA, Siemens,
DNV-KEMA, internal



Research Areas

Time Short Term (15min-24h)\\/
:

Long Term (months, years) .

Scale

Individual
Building

Building
Cluster/
Industrial
Complexes/
Communities

Load forecasting and Control

* Physics + statistics based energy
forecasts

* Real-time MPC control

* Day-ahead planning optimization

e Real-time load tracking control

Demand/Generation

management

e Dynamic pricing & coordinated
response

* Microgrid control (day ahead and
same day)

* Energy Efficiency & MPC

e Storage control

IBEAM
 HVAC system degradation, O&M
e Building value model

cBEAM

e Common resources, budget
constraints, O&M

Microgrid Planning and
iInvestment

Net Zero communities
AFV fueling infrastructure



Load forecasting and Control

Real Building

Simulation Model

(tempe\g{cSrae:cfl:]u?nridity,...) k Fo reca St M Od el
(“Hybrid”)
Operations

Use simulation data at the
beginning to build model offline

(light, plugs, occupancy, ...)

Temperature

Use real/trending data to update
(setpoints, day-night mode, ...) model online

Controls




Load forecasting and Control

\
Objective: Building a prediction model to capture the complex dynamics of the
thermal and operational behavior in the building
* Energy-Plus but with minimum number of runs
e Data Driven Models i.e. statistical models/ Neural Network
offline - -
\ /
- . . . \
online Objective: Developing Building Optimal ] Objective: Load Planning and Load Tracking

Control Strategy

* Use real-time sensor data
* Grey-box model (physical/

statistical model)
* MPC- to minimize the energy
cost while keeping comfort

Industrial processes and

complexes

* Use real-time sensor data

* Black-box model (Neural Network)

* Load planning — to minimize energy cost
Load tracking — to track the consumption
commitment made in day-ahead planning

.

Residential/commercial
complexes



Physical-Statistical Model
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PhysicaI-StatisticaI Model — parameter Estimation

effective power rate
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1) Rogers, A., Maleki, S., Ghosh, S., and Jennings, N. R. Adaptive Home Heating Control Through Gaussian Process Prediction and Mathematical Programming, Agent
Technologies for Energy Systems Workshop (ATES) at AAMAS 2011 7



Energy Forecast Model

Time Series Regression Model T

2- Zones Sensible Cooling Rate

Total Energy k
Consumption
t = Eﬁjxtj t &
7=0
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Can Explain the effects of |
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PhysicaI-StatisticaI Model — Energy Forecast Mode
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Physical-Statistical Model — optimization Model

There are two Objective
Functions

ket
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Thermal Comfort
Limits Obj. Functions is not necessarily
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1) Ma, Y.; Kelman, A.; Daly, A.; Borrelli, F.; , "Predictive Control for Energy Efficient Buildings with Thermal Storage: Modeling,
Stimulation, and Experiments," Control Systems, IEEE , vol.32, no.1, pp.44-64, Feb. 2012 10



Physical-Statistical Model — optimization Model

Constraints

N
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Physical-Statistical Model — optimization Model

N-1

G =min 3¢y (6120 JA 1, maxy (7, 1 A
N
GZ() = mlnp; qétu+k + ‘5tl+k )

S.t.
T G) = T () + 6 R )+ ¢ (T (- T ()
1 Toil () =[0)] = T () = Tl (i) +

u
min (St+k
l u
- 5t+k’ §t+k =0 [—/\Dynamic }
1=1,2,...m (# zones),]' =1,2,...N Programming

12




Neural Network Model

* Non-linear Autoregressive with External
Inputs (NARX) Neural Network fits to
EnergyPlus simulation data

St+1 — fNN(Stt St—l)St—Zr iSt—dS'
Xt) Xt—1) Xt—2) +=e) xt—dxr
Up, Up—1, Ug—2) v » Ut—q,)

S: system states (power, average room temperature)
x: weather and operation factors

(time, month,

dry bulb temp, dew point temp,

lighting load, plug load, occupancy)
u: control inputs (cooling setpoint, heating setpoint)



Power [kW]

Neural Network Model — mModel validation

Model is trained with data generated from 25 year simulation and randomly generated
operations and control inputs (to have enough variations)
NARX with 11 hidden layer nodes and 1 step delay
R?=0.9979

Prediction error:
Power: =10kW
Ave. Zone Temp: =1°C

Avg. Zone Temp

300 T T 24 T T T
Power by E+ model Ave. Zone Temp. by E+ model
Power by Building NN 235 Ave. Zone Temp. by Building NN
250 | 23 AN
|\
N N/
it | | } N f
Hf | 225 ” | ’ ( “,f /
(1 | f\f‘y | | I
s T LT
y \ I ) _qD) / ‘ ‘ \ |
Ty 9 |-
! Y 3 215F [l |
o N ’
" g & / |4 |
150f || \ \ 5 ot v “
V N /
’ 20.5
100 B 20+
195
50 1 | 1 I 19 | I
Jul 11

I I I I | I
Jul12 Jul 13 Jul 14 Jul 15 Jul 16 Jul17 Jul 11 Jul12 Jul13 Jul 14 Jul 15 Jul 16 Jul 17



Day-Ahead Planning

* Planning problem formulation
Minimize: 24 F,
s. t.: Ft — CtPt -+ aU(Tt)

— — 2 Deviation from optimal
U(Tt) - (Tt TOPt) %\ (comfortable) temperature

P
[Tt] = NARX_NN(W',0’,u")
t
F: overall cost T: room temp
C: unit price of energy consumption  7,,: optimal indoor air temp
P: energy consumption W’: weather forecast
a: thermal comfort loss coefficient O’: operations forecast

U: thermal comfort loss u’: planned control inputs



Power [kW]

Temp [degC]

Neural Network Model — Day-Ahead Planning result

Forecasts of operations
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Real-Time Load Tracking

* Load Tracking problem formulation
Minimize: Y22, D,
s.t.: D, = CFD,(P,—P',)?
[t
Tt
D: Contract-for-Difference cost

CFD: Contract-for-Difference rate

P: real energy consumption
P’: planned/committed consumption

] = NARX_NN(W, 0, )

T: room temp

W: real weather

O: real operations

u: real control inputs

17
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Real-Time Load Control
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Research Areas

Time Short Term (15min-24h)

Long Term (months, years) .

Scale

Individual
Building

Building
Cluster/
Industrial
Complexes/
Communities

Load forecasting and Control

* Physics + statistics based energy
forecasts

* Real-time MPC control

* Day-ahead planning optimization

e Real-time load tracking control

Demand/Generation

management

e Dynamic pricing & coordinated
response

* Microgrid control (day ahead and
same day)

* Energy Efficiency & MPC

e Storage control

<€

IBEAM
 HVAC system degradation, O&M
e Building value model

cBEAM

e Common resources, budget
constraints, O&M

Microgrid Planning and
iInvestment

Net Zero communities
AFV fueling infrastructure

BA



Dynamic Pricing and Coordinated Response

 Community/complex level planning and control with base loads,
plug-ins (EVs)
* Dynamic Pricing
— Time-of-Use rate is settled 24-hour ahead by automated negotiation
between Energy Management Controller (EMC) and each individual
building

 EMC: determines price based on aggregated load profile (forecast) and whole
sale market (forecast)

* Individual building: load planning based on price

— Contract-for-Difference (CFD) price is charged to individual buildings,
on the difference between real and committed load profiles

* Individual building: load tracking to minimize CFD charges
e Coordinated response to minimize CFD charges

* Minimizing demand variations and risks to the grid (distribution)
 Demand Elasticity of use and and its contribution to coordination



Microgrid Planning, control and investment

* Microgrid day-ahead planning and same day

Contr0| under uncertalnty’ 12 i i LY -actLuaIpurchase
I avg. spot
10|~ [ Jowt
° [ ] I:lng
Functional form for MG savings . =
Costyce = f(gre Ipv e lwr e lwre) &
- GFCap 2| .
GF — E[D] | Jlml
- Average Daily PV Electricity Production _ PVCap _ CpyXE[S]] 0 ; 10 s 20 5
T Average Daily Demand " E[D]  E[D] et
_ Average Daily WT Electricity Production  WTCap _ CyrXnyrXE[WS?]
wr Average Daily Demand ~ E[D] E[D]
oo STCap
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Microgrid Planning, control and investment

* Micro-grid power generation portfolio
optimization under uncertainty;

— short-term uncertainties rising from micro-grid
operation, and

— long-term uncertainties due to future natural gas

prices, investment in renewable assets, and
financing costs.



Microgrid Planning, control and investment

* A solution approach that uniquely combines a general binomial
lattice with mixed integer quadratic model for budgeting and a
regression model that estimates cost of operation and planning
micro-grid with its current resources and load.

100
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Microgrid Planning, control and investment

Costyge = Por + Prtlore + Baitlpv e Xlwr e + B3 elwr e XIsr

5

1 2 3 4

= E[GF]
= E[PV]
= E[WT]

W E[ST]

24



Microgrid Planning, control and investment

Costyge = Por + PreloreXIste + Bailpv e XIwre + Baelpy ¢ XIst e + Paelwr e XIst e

5

4.5

4

35

1 2 3 4

Years

™ E[GF]
= E[PV]
= E[WT]

B E[ST]

25



Research Areas

Time Short Term (15min-24h)

<

Long Term (months, years) .

Scale

Individual
Building

Building
Cluster/
Industrial
Complexes/
Communities

Load forecasting and Control

* Physics + statistics based energy
forecasts

* Real-time MPC control

* Day-ahead planning optimization

e Real-time load tracking control

Demand/Generation

management

e Dynamic pricing & coordinated
response

* Microgrid control (day ahead and
same day)

* Energy Efficiency & MPC

e Storage control

IBEAM
 HVAC system degradation, O&M
e Building value model

cBEAM

e Common resources, budget
constraints, O&M

Microgrid Planning and
iInvestment

Net Zero communities
AFV fueling infrastructure



Building Energy Asset Management (BEAM)

Synthesize
Mapping of operational
objectives to energy assets

Measure
Energy value index for
energy assets
u
Simulation and criticality
anshas Plan

Automated Continuous
——— peedce
BEAM Configuration phase;
Typical timescale: months or more

Optimization of investment
on new assets
Maintenance policies

BEAM Planning phase;
Typical timescale: weeks or more %

BEAM Execution phase;
Typical timescale: hours or more

Energy-Plus used in operation and long term planning.

27



BEAM O & M Optimization

Objective #1. Min{Total Building Energy Consumption}
Objective #2. Min{Total Building Cost}

subject to:
Total Building Cost < Total Budget
Mutually Exclusive O &M Policy Options

We will assume that:
Asset energy consumption ~ Asset Avg. effective age

Min {Avg. asset effective age} = Max {Total improvement in asset
effective age}



BEAM O & M Optimization

Two Types of Optimization for Building O&M
* O&M Optimization I:
= Only direct impacts of O&M policies

* O&M Optimization Il:
= Both direct & indirect impacts of O&M policies
I.€. maintenance policy put on asset 1, not only improves asset 1’ s

effective age, but it also impacts asset 2’ s effective age (positive or
negative impact).



BEAM O & M Optimization

Objective #1 Min {Total Building Energy Consumption}
Max{Total Assets Energy Performance Improvement}
Optimization | & II

differin Atikl
= Max { z X xtikl 3 Calculation ‘
t’i’k’l »‘)

Where
_ {1 if Policy (t; k,1)is on asset i
Xtikl = ;
0 Otherwise

VvVt = 1,2 (seasons)

Vi =1,...,n (assets)

vk = 1,...,6 (maintenance policy in BEAM)
vl =1, .., m(frequency)

30



BEAM O & M Optimization

Objective #2

Total Building Cost = '{'otal Preplanned Action Co;st +‘Asset Penalty Cost + Unexpectec’j
Y Y

Reactive Cost
Fixed maintenance Cost upon asset
Cost failure

Total Building Cost = Total Preplanned Action Cost + Asset Penalty Costg,..option -
Reduction in Penalty Cost + Unexpected Reactive Costg,.opi0n — R€duction in
Unexpected Reactive Cost Due to reduction in #

failures

Reduction in Penalty Cost + Reduction in Unexpected Reactive Cost = Total Reduction
in Unexpected Cost

Min {Total Building Cost} = Min {Total Preplanned Action Cost — Total Reduction in
Unexpected Cost}

31



BEAM O & M Optimization

Objective #2 . o
Min{Total Building Cost}

= Min { z (CPAt kl) X xtlkl [(CPRukl) + (CRRt kl)] X xtlkl
tlkl Y |

Total preplanned Total reduction in
action cost unexpected cost

Where

Cpy = PrePlanned Action cost  Vi,V(t; k,[)

Crr = E(Unexpected Reactive Cost Reduction) Vi,V(t; k,I)
Cpr = E(Penalty Cost Reduction)  Vi,V(t; k, 1)

32



BEAM O & M Optimization

Constraints

1 Z xtlkl < 1 Vt,l %\ Mutually Exclusive Options }

< Total bwlglndgcost Total }
udget
E [(CPAukl) (CRRukl)] X Xtikl = Bllmlt E CR _baseyg;

tik,l

Where

Cpy = PrePlanned Action cost  Vi,V(t; k,[)
Crr = E(Unexpected reactive cost reduction) Vi,V (t; k,1)
Cr pase = E(Unexpected reactive cost of base option) Vt,i

33



BEAM O & M Optimization

Optimization |, Coefficient Calculation: Cy ;4.

o A
oo
<
mn
5
8 T1
= |
L 1
T0 i
Slope with Average Load
' >
A Time
[}
=
©
o
v M)
=
S
L
4
N iy 1
ro sy —4=> A_base
N <\ » ~ —
|’\*<‘~2’ s, .1 >

Effective Age

T,
Apase = | A(t) = E(#failure in base option)
To
Ty
Attt = | A(t) = E(#failure in option (t; k, 1) for i)
To

(Crepairl- + Creplacei)
2

CRRtikl = (Apase — Atik) X

|

Unexpected reactive cost
reduction

(Crepairi + Creplacei)
2

Unexpected reactive cost
of base option
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BEAM O & M Optimization

Optimization |, Coefficient Calculation: Cp ;.

ti
CPR ikl ( base tlkl)

m Penalty per failure of asset i
reduction

renalty costbase | X Penalty per failure of asset i

option

Where

CPReja =
E(Penalty cost reduction for asset i with option (t; k, 1)

Penalty per failure of asset i can be obtained from
BEAM’s BVM-Il score.

BVM-II (Building Value Model) score is the S value loss
per failure of an asset.

35



BEAM O & M Optimization

Optimization |, Coefficient Calculation: A;;;

o A
)
<
£ " - vtk D)
E ™ fori=1,..,nassets
- :
i 511 ans 517?,
| 6(t;k'l) == 521 5271
T0 . 0 0
: Improvement
: dependencies matrix ni nn
: >

0y (GkL), Improvement in asset i as aresult of (t; k, 1)
61-]-(”"1): Improvement in asset j as a result of (t; k, )
onasset i

61.]-(““1) =0 Vi=#j(inoptimizationlI)

Atig = 5(1-':)(“’('0 X (EW)T'x (Avg Seasonal Degradation) ‘i

\

Obtained offline from EnergyPlus
EW:Energy Weight Matrix 36




BEAM O & M Optimization

Optimization II-2 asset example option (t;k,l)
on asset 1

A
Asset 1 A

}511@’("

Asset 1

—
N

Effective Age
—

Failure Rate

TO

A

Asset 2
Asset 2

—
N

Effective Age
_|

A (t)

Failure Rate

TO

—> 37
Time TO 1 T2 Effective Age




BEAM O & M Optimization

Optimization Il - option (t;k,l) on asset 1

A
Asset 1
Q
k;
o AMY)
=
& o7 C ( A (t:k, 1)) Crepair1 + Creplac31
# '/,//,} o RRi1k1 — 11 2
| > Aqq"
| A : 1 (t;k,1) Crepairz + Creplacez
et > + (Alz " ) X 2
TO 1T T2 Effective Age
4 Where
© Asset 2
% 2 (0 Crr,,,; = E(Unexpected Reactive Cost Reduction
= for asseti with option (t; k, 1))
o
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BEAM Optimization

* Itis highly unlikely that there exists a feasible
solution that optimizes all objectives!

* |nstead, we seek a small set of feasible solutions
which are non-dominated

e Feasible solution is non-dominated if

— There is no other feasible solution that is better or
equal in all objectives



BEAM Optimization — Case Study

= Scenario #1-Optimization only on chiller: Optimal policy for
chiller : Preventive Maintenance Clock-based type 3,
Frequency=3 months

= Scenario #2-Optimization on 6 assets:

Recommended Optimal Policy are:
Chiller: Preventive Maintenance Clock-based type 3, Frequency=3 months
Boiler: Preventive Maintenance Age-based type 3, Frequency=3 months

Supply Fan 1 (AHU 1): Preventive Maintenance Clock-based type 3,
Frequency=3 months

Supply Fan 2 (AHU 2): Preventive Maintenance Age-based type 3,
Frequency=3 months

Return fan 1 (AHU 1):Preventive Maintenance Clock-based type 3,
Frequency=3 months

Return fan 2 (AHU 2): Preventive Maintenance Age-based type 3,
Frequency=6 months



Energy Savings
(4 year planning)

Chiller Boiler Gas  Building Total % Saving in % Saving in
Electricity Consumption Electricity Building Boiler Gas

Consumption Consumption Electricity Consumption

Baseline 1696597.721 | 1923835.056 @ 3588151.297
KWh KWh KWh
Optimization
on Chiller 1565035.065 | 1919373.119 | 3427283.006 4.5% -
KWh KWh KWh
Optimization
001 S A | 1542024.515 | 1889991.510 | 3395089.094 5.4% 1.7%*
KWh KWh KWh
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Energy Savings

10% degradation increase (4 year planning)

Chiller Boiler Gas Building % Saving in % Saving in
Electricity Consumption Total Building Boiler Gas

Consumption Electricity Electricity Consumption
Consumption

Baseline 2560093.637 | 1933343.918 | 4523347.172
KWh KWh Kwh

Optimization

on Chiller 1659577.289 | 1934333.240 | 3883931.966 14.13%

KWh KWh KWh

Optimization
On 6 Asset

1610946.879 | 1786283.760 | 3522506.937

(o) (o)
KWh KWh KWh 22.12% 7.6%
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